bwin必赢中国官网,bwin 必赢,助理教授
2007年在北京大学bwin 必赢获得博士学位, 2014年到OSU访学一年。
科研与学术工作经历
(1) 2007/07-至今,bwin必赢中国官网,bwin 必赢,助理教授
(2) 2014/08-2015/08, 俄亥俄州立大学,数学系,访问学者,合作导师:关波
主持或参加科研项目(课题)情况:
(1) 国家自然科学基金委员会, 面上项目, 12271450, 广义相对论中Kaluza-Klein宇宙时空的稳定性及相关问题研究, 2023-01-01 至 2026-12-31, 45万元, 在研, 参与。
(2) 国家自然科学基金委员会, 面上项目, 12071200, 可压缩Navier-Stokes方程解的存在性及渐进性态, 2021-01-01 至 2024-12-31, 52万元, 在研, 参与。
(3) 国家自然科学基金委员会, 面上项目, 11971401, 复Finsler流形上的函数论和几何, 2020-01-01 至2023-12-31, 52万元, 在研, 参与。
(4) 国家自然科学基金委员会, 面上项目, 11871408, 完全非线性几何偏微分方程, 2019-01-01 至 2022-12-31, 53万元, 结题, 参与。
(5) 国家自然科学基金委员会, 面上项目, 11871410, 大密度比相场模型的高效有限元方法, 2019-01-01至 2022-12-31, 52万元, 结题, 参与。
(6) 国家自然科学基金委员会, 面上项目, 11671331, 非线性Schrodinger-Poisson方程组的高频驻波解及相关问题, 2017-01-01至 2020-12-31, 48万元, 结题, 参与。
(7) 国家自然科学基金委员会, 面上项目, 11271304, 复Finsler空间的几何函数论, 2013-01-01至 2016-12-31, 60万元, 结题, 参与。
论文成果:
1、已发表或接收文章:
(1) Guocai Cai, Jing Li. Existence and exponential growth of global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D bounded domains[J]. arXiv preprint arXiv:2102.06348, 2021. received by IUMJ.
(2) Guocai Cai, Yunkun Chen, Yanfang Peng, Yi Peng. On the asymptotic behavior of the one-dimensional motion of the polytropic ideal gas with degenerate heat conductivity[J]. Journal of Differential Equations, 2022, 317: 225-263.
(3) Guocai Cai, Canpei Chen, Yanfang Peng. Nonlinear Stability of Solutions on the Outer Pressure Problem of Compressible Navier-Stokes System with Temperature-Dependent Heat Conductivity[J]. Journal of Mathematical Fluid Mechanics, 2022, 24(3): 1-22.
(4) Guocai Cai, Chunhui Qiu, Xiuling Wang. On some classes of projectively flat Finsler metrics with constant flag curvature[J]. Differential Geometry and its Applications, 2020, 68: 101579.
(5) Guocai Cai, Hongjing Pan, Ruixiang Xing. A note on parabolic Liouville theorems and blow-up rates for a higher-order semilinear parabolic system[J]. International Journal of Differential Equations, 2011, 2011.
(6) Guocai Cai, On the heat flow for the two-dimensional Gelfand equation[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(7): 1860-1867.
2、未发表文章:
(1) Guocai Cai, Bin Huang, Xiaoding Shi. On compressible Navier-Stokes equations subject to large potential forces with slip boundary conditions in 3D bounded domains[J]. arXiv preprint arXiv:2102.12572, 2021.
(2) Guocai Cai, Jing Li, Boqiang Lü, Global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D exterior domains[J]. arXiv preprint arXiv:2112.05586, 2021.
(3) Guocai Cai, Boqiang Lü, Yi Peng. Global strong solutions to density-dependent viscosity Navier-Stokes equations in 3D exterior domains[J]. arXiv preprint arXiv:2205.05925, 2022.